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a  b  s  t  r  a  c  t

Recently,  the  deep  transfer  learning  approaches  have  been  widely  developed  for  mechanical  fault  diag-
nosis  issue,  which  could  identify  the health  state  of  unlabeled  data  in  the  target  domain  with  the  help  of
knowledge  learned  from  labeled  data  in the  source  domain.  The  tremendous  success  of  these  methods  is
generally  based  on  the assumption  that  the  label  spaces  across  different  domains  are  identical.  However,
the partial  transfer  scenario  is more  common  for industrial  applications,  where  the  label  spaces  are  not
identical.  This  partial  transfer  scenario  arises  a more  difficult  problem  that  it is  hard  to  know  where  to
transfer  since  the  shared  label  spaces  are unavailable.  To  tackle  this  challenging  problem,  a double-layer
attention  based  adversarial  network  (DA-GAN)  is  proposed  in  this  paper.  The  proposed  method  sheds  a
Domain adaptation new angle  to  deal  with  the  question  where  to  transfer  by  constructing  two  attention  matrices  for domains
and  samples.  These  attention  matrices  could  guide  the  model  to know  which  parts  of data  should  be  con-
centrated  or  ignored  before  conducting  domain  adaptation.  Experimental  results  on  both  transfer  in the
identical  machine  (TIM)  and  transfer  on  different  machines  (TDM)  suggest  that  the  DA-GAN  model  shows
great  superiority  on  mechanical  partial  transfer  problem.

©  2021  Elsevier  B.V.  All rights  reserved.
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1. Introduction

With the increase of complexity of manufacturing systems, the
machine fault diagnosis serves an important role to guarantee the
stability of industrial production. With the rapid development and
integration of sensor techniques for modern industry, huge amount
of monitoring data could be collected in engineering scenarios
(Lei et al., 2018). The data-driven approach gradually shows its
superiority on machine fault diagnosis, which is mainly regard to
two aspects: (a) developing advanced signal processing methods
to extract representative features, such as wavelet analysis (Liang
et al., 2019), empirical mode decomposition (EMD) (Flandrin et al.,

2004), singular value decomposition (SVD) (Liu, 2020), and (b)
applying machine learning methods to seek the hidden relation-
ship between the collected data and the health states of machines,
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uch as artificial neural network (ANN), support vector machine
SVM) and recent deep learning approaches (Márquez et al., 2020;
i et al., 2019a, b). Among these research, deep learning method
as gain great popularity regarding to its capacity of multi-layer

eature learning from mechanical big data.
The key of applying deep learning models for mechanical fault

iagnosis is sufficient labeled training data. However, it is unprac-
ical to collect sufficient labeled fault data in real engineering
cenarios, which can be mainly attributed to two reasons: First,
he degradation of machines is usually a time-consuming process,
hich takes much cost to obtain sufficient data and further label

hem. Second, some machines may  not be allowed to run to fail-
re because the unexpected fault could lead to the break down
r even catastrophic accidents (Guo et al., 2018). The aforemen-
ioned problems limit the successful development deep learning
iagnostic model in real industrial fields. On the other hand, suffi-
ient mechanical fault label data can be collected in the laboratory

latform with specific working conditions. In this background, one
romising idea is to promote the generalization ability of current
iagnosis model, which could transfer the diagnostic knowledge
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from the source labeled data to the target unlabeled data. For
this issue, the transfer learning methods have been investigated
to expand deep diagnosis model from academic research to engi-
neering scenarios.

Generally, the transfer scenarios could be divided into two
categories (Lei et al., 2020): transfer diagnosis knowledge in the
identical machine (TIM) and transfer diagnosis knowledge across
different machines (TDM). Aimed at these two different transfer
scenarios, many deep transfer-learning based models have been
proposed, which can be classified into three categories according to
the transfer techniques: fine-tune approaches (Zhang et al., 2017;
Cao et al., 2018a; Shao et al., 2018), feature-based approaches (Wen
et al., 2017; Li et al., 2018a; Yang et al., 2019) and adversarial-based
approaches (Li et al., 2018b; Zhang et al., 2020):

Despite the successful development of deep transfer learning
approaches in mechanical diagnosis field, the existing approaches
mainly deal with the problem of how to transfer without consid-
ering the problem of where to transfer. They carry out the transfer
model based on the assumption that the source domain and target
domain have the same label space. However, a more general case
for real engineering applications is that the label spaces between
two domains are different, which can be referred to Yt ⊂ Ys. This
scenario can be defined as partial transfer problem, which was  ini-
tially proposed in the image processing fields (Cao et al., 2018b).
The partial transferring scenario would produce a more difficult
challenge, in which we even do not know which part of the source
domain label space Ys is shared with the target domain label space
Yt . Moreover, the outlier source domain labeled data Ys\Yt will
lead to negative transfer effect to the overall transfer performance.
It is essential to select the effective part from the source domain to
determine where to transfer for the target domain. For the par-
tial transfer problem in mechanical diagnosis field, only a few
researchers made exploratory work based on the adversarial-based
approaches (Li et al., 2020a; Cao et al., 2018c). However, there are
mainly two limitations in the existing methods:

1) The current researchers mainly focus on transferring the
mechanical diagnosis knowledge in one identical machine (Lei
et al., 2020), but the partial transfer problem across different
machines have not been studied comprehensively.

2) To address the problem of where to transfer in the partial
transfer problem, the common approach is to assign different
weights for the corresponding domain discriminators. However,
the effects of samples from different domains are neglected.
The transferability would be severely degraded if the irrela-
tive samples from different domains are fed into the network
indiscriminately (Cao et al., 2018b).

Aiming at the above limitations, a novel double layer attention-
based generative adversarial network (DA-GAN) is proposed in this
paper to expand the diagnosis model for more general engineering
applications. The proposed DA-GAN network consists of three mod-
ules: a feature generator, a source classifier G and a double layer
attention-based discriminator D. The generator F automatically
extract deep features f from both domains and the classifier G could
accurately recognize the different fault types in the trained source
domain. The proposed double layer attention-based discriminator
D deal with the problem of where to transfer in aspects of both
selecting effective domain and samples. Based on these three mod-
ules, the proposed DA-GAN approach is expected to address the
partial transfer learning problem for both TIM and TDM scenarios.
The main contributions are summarized as follows:
1) Different from existing deep transfer diagnosis models where
either the label spaces or the mechanical components to be
transferred across two domains are assumed to be same, the
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problem in which both the label space and mechanical compo-
nents are different has been investigated in this paper. A novel
deep-transfer learning model called as double layer attention-
based generative adversarial network (DA-GAN) is proposed to
address the partial transfer learning problem across different
machines. This exploration contributes one of the first attempts
to deal with this practical problem for expanding academic
research to engineering applications.

) A novel double layer attention mechanism is designed in the
proposed DA-GAN model to better solve the problems of where
to transfer and how to transfer. The proposed double layer atten-
tion mechanism enables the whole adversarial network to know
which discriminators should be concentrated or be neglected
for partial domain adaptation, as well as to decide which part of
the source domain data should be shared for the target domain
during each discriminator’s training process.

) Comparative experimental studies based on three different
bearing datasets are investigated to evaluate the proposed
method comprehensively, in which totally 42 transfer tasks
across different working conditions, different machines and dif-
ferent types of fault characteristic are all considered.

The remainder of this paper is organized as follows: Section
 introduces the theoretical background of transfer learning and
dversarial strategy for transfer learning; Section 3 details the pro-
osed method; Section 4 demonstrates the experiment results and
iscussions; Section 5 draws the conclusions.

. Theoretical background

.1. Background of transfer learning

The transfer learning aims at sharing reusable information
cross different scenarios, in which the domain and task are two
asic concepts. The domain is denoted as a pair of D  =

{
X, P (X)

}
,

ncluding the sampled data X =
{
xi

}N
i=1

and its marginal distribu-

ion P (X).  The task T =
{
Y, P

(
Y
∣∣X)} consists of the label space

 =
{
yi

}N
i=1

and the objective prediction function f ( · ) = P
(
Y
∣∣X).

For the mechanical fault diagnosis issue, transfer learning is
pplied for promoting the generality of the diagnosis model to cover
he divergence of working conditions, the variation within compo-
ent family type as well as the difference between machine types.
he domain and task are detailed to describe the transfer learning
roblem in mechanical diagnosis as follow:

) The source domain serves as the one which could provide diag-
nosis knowledge to other diagnosis tasks (Pan and Yang, 2009).
The source domain is denoted as: Ds =

{
Xs, Ps (X)

}
, where the

dataset Xs contains sufficient labeled samples and follows a
marginal distribution Ps (X). The source task is denoted as Ts ={
Ys, P

(
Ys

∣∣Xs)}, where the label space Ys =
{

1, 2, . . .,  k
}

con-
tains different k kinds of health state and the diagnosis model
could be obtained as fs ( · ) = P

(
Ys

∣∣Xs), which could be learned

from the labeled dataset
{
xs
i
, ys
i

}Ns
i=1

.
) The target domain serves as the one where the diagnosis knowl-

edge could be reused. The target domain is denoted as: Dt ={
Xt, Pt (X)

}
. If the labels in the target domain could be obtained

as
{
xt
i
, yt
i

}Nt
i=1

, the transferring task from the source domain to

the target domain could be attributed to inductive transfer prob-
lem. On the other hand, if there are only unlabeled samples
Xt =

{
xt
i

}Nt
i=1

in the target domain, where the latent diagnosis

model ft ( · ) = P
(
Yt

∣∣Xt) is unavailable. In this case, the trans-
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ferring task could be regard as a transductive transfer problem
(Li et al., 2020b).

3) In order to guarantee the effective transfer performance from
the source domain to the target domain. The label space of the
source domain is expected to cover or at least equal to that of the
target domain, i.e., Yt ⊆ Ys ⊆ Y (Cao et al., 2018c). An intuitive
explanation is that only when the source domain contains sim-
ilar failure modes as the target domain, can it transfer reusable
diagnostic knowledge to the target task.

2.2. Generative adversarial strategy for transfer learning

The GAN (generative adversarial network) based transfer learn-
ing approach develops an adversarial strategy to combine the
domain adaptation and feature learning in one training process. A
simple GAN model consists of two modules: a generator Gf (·) and a
discriminator Gd (·). The generated feature vectors f = Gf

(
x, �f

)
is

usually obtained by a multi-layer mapping function, such as SAE
and CNN, where x is a series of raw sampling points and �f be
defined as Pf = Gd

(
f , �d

)
, where Pf is the probability that f comes

from the source domain rather than the target domain and �d is the
discriminator parameters.

During the training process, the discriminator adjusts its param-
eters �d to maximize the probability the Pf , thus the generated
feature f t from the target domain can be distinguished from the
generated f s from the source domain. In contrast, the generator is
designed to minimize the Pf to confuse the discriminator by gen-
erating fake samples with the similar distribution to the source
domain feature. As the minimax two-player game continues, the
GAN model is optimized to capture domain-invariant features,
which can be formulated as:

min
Gf

max
Gd Exs ∈ Xs [logGd (f s)] + Ext ∈ Xt [log (1 − Gd (f t))]

(1)

3. Proposed method

3.1. Problem formulation

In this paper, a partial transfer learning problem is studied
for fault diagnosis of identical machines and different machines,
where the learned diagnosis knowledge from the source domain
is expected to be transferred to the target domain. Generally, this
study is carried out under the following assumptions:

1) The fault diagnosis problems from two domains are different,
specifically the health state labels from the source domain are
not identical as the target domain, Yt /= Ys.

2) For the source domain, there are sufficient labeled data,{
xs
i
, ys
i

}Ns
i=1

for supervising learning, but there are only unlabeled

data
{
xt
i

}Nt
i=1

in the target domain, which can be attributed to the
transductive transfer problem.

3) Since the fault diagnosis transfer across different machines is
also investigated, the data attributes from source and target
domains could be totally different, such as the difference across
sample length and the variance in the sample distribution.

Since the target domain label space is assumed to be the sub-
set of the source domain label space, Yt ⊆ Ys, the outlier data from
source domain �YsYt =

{
y
∣∣y ∈ Ys, y /∈ Yt

}
will lead to the unnec-

essary negative transfer. Correspondingly the larger the outlier
label space �YsYt compared to the Yt , the worse the transferability

across different domains will be. To combat the negative trans-
fer effect caused by �YsYt and determine which part should be
shared from the source domain, the DA-GAN model is proposed
to achieve the partial mechanical diagnosis transfer task under the

l
d

3

Computers in Industry 127 (2021) 103399

iven assumptions, and the framework of DA-GAN is illustrated in
ig. 1.

Since the direct feature learning from raw noisy signal gener-
lly leads to low network training efficiency, data-preprocessing
echniques including resampling, fast Fourier transformation (FFT)
nd frequency spectrum rescaling are applied to transform the
aw mechanical vibration data. It should be noticed that data from
ource domain and target domain may  have different sampling
requency, which would lead to the misalignment of frequency fea-
ures and further degrade the model transferability. Therefore, the
pectrum rescaling is applied to the source and target spectrums
fter fast Fourier transformation, which facilitates the frequency
eature alignment through sharing the same frequency range then
he aligned spectrum images will be fed into the separable CNN
etwork and deep layer feature generator is trained to extract
omain-invariant features. The extracted feature fs from the source
omain are used to train the label classifier Gy to guarantee the fault
iagnosis functions. At the same time, a two-stage attention-based
iscriminator is conducted to deal with the problems of where to
ransfer and how to transfer gradually. The details of the feature
enerator and attention-based discriminator will be introduced in
ection 3.2 and 3.3.

.2. A separable convolutional neural network

In this section, the feature generator Gf and the source label
lassifier Gy are built based on a separable convolutional neural
etwork (S-CNN). As a powerful tool to achieve deep feature extrac-
ion and classification, a variety of CNN based models have been
roposed recently, and the model performance is optimized by
hanging the networks connecting architecture as well as intro-
ucing the heterogeneous convolution kernels. However, these
tacked deep models are usually designed for huge-scale classi-
cation tasks, such as face recognition with millions of samples.
onsidering the characteristics of mechanical monitoring data, we

ntroduce the S-CNN model with less parameters to replace the
raditional CNN model.

The traditional convolutional neural network learns features
rom all three dimensions of the input images, which include
he width, the height and the channels. Therefore, the kernel in
NN is expected to characterize the spatial relationships and the
ross-channel correlations synchronously. The process of CNN is
emonstrated in Fig. 2 (a), and the general formulation of convolu-
ional kernel is given as:

onv(W,  x)(i,j) =
∑M,N,K

m,n,k
W(m,n,k) · x(i+m,j+n,k) (2)

here W is the parameters of the kernel weight matrix to be
rained. The input is denoted as x and the (i, j) denotes the coordi-
ation of the output feature. m, n, k indicate the width, the height
nd the channel number of the convolutional kernel respectively.

Different from the traditional CNN model, the introduced
eparable convolution neural network characterizes the spatial
elationships and the cross-channel correlations independently,
ncluding two simpler steps: a depthwise convolution and a point-

ise convolution, which is demonstrated in Fig. 2 (b).
In the first step, the convolutional kernel is applied to extract

ach channel information of the input data. After the operation
f depthwise convolution, the number of the channels does not
hange. The depthwise convolution is expressed as:

W − Conv(W,  x)(i,j) =
∑M,N

W(m,n) · x(i+m,j+n) (3)

m,n

In the second step, a pointwise operation with a 1 × 1 convo-
utional kernel is developed to concatenate the outputs from the
epthwise convolution, which is described in Eq. (4). The point-
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Fig. 1. Framework of

wise convolution is applied to extract spatial information, which
would not change the spatial size but change the channel size.

PW − Conv(W,  x)(i,j) =
∑K

k
Wk · x(i,j) (4)

Combined with the Eq. (3) and Eq. (4), the overall expression of
the separable convolution can be expressed as:

S − Conv(WD, WP, x)(i,j) = PW − Conv(W,  x)(i,j)[
WP, DW − Conv(W,  x)(i,j)

]
(5)

To quantitively evaluate the difference between the CNN and
the separable CNN, the model parameters are calculated. W,  H, C
indicate the width, the height and the channel number of the con-
volutional kernel respectively, and the kernel number is denoted
as K . The ratio of total required parameters is given in Eq. (6). It can
be seen that the separable CNN could effectively reduce the model
complexity since the entire feature extraction is divided into two
simpler steps independently.
PS−CNN
PCNN

= W × H × K + C × K

W × H × K × C
= 1
W × H

+ 1
C

(6)

The architecture of proposed feature generator is shown in Fig. 3,
which mainly consists of the separable convolutional layer, pool-

w
b

fi

4

sed DA-GAN model.

ng layer and residual connection layer. By replacing the CNN with
eparable CNN, the calculation complexity is greatly reduced with-
ut sacrificing prediction accuracy. The pooling layer can quickly
ecrease the dimension of extracted features, which could reduce
he layers needed in the model and introduce some nonlinear
hanges. The residual connection is designed to avoid the gradi-
nt degradation during training and information loss, which could
romote the feature extraction from different levels.

The detailed parameters of proposed feature generator and sub-
omain discriminator are given in Tables 1a 1b. After the operation
f global average pooling P4, a fully connected layer is conducted
o flatten the outputs and to map  them into features f , which can
e formulated as:

 = �
[(
wf

)T
x + bf

]
(7)
here wf indicates the weight matrix and bf is the corresponding
ias vector, and x is the input vector from the above pooling layer.

After building the feature generator Gf , the source label classi-
er could be established subsequently. The classifier Gy is a simple



Y. Deng, D. Huang, S. Du et al. Computers in Industry 127 (2021) 103399

Fig. 2. Architecture of CNN and separable CNN.

Table 1a
Parameters of proposed feature generator.

Layer Symbol Operator Parameter

1 Input Input data 3 × 64 × 64
2  SC1 Separable convolution2D Channel number:128,

kernel size:3
3  LR1 LeakyReLU alpha=0.3
4  D1 Dropout p = 0.25
5  SC2 Separable convolution2D Channel number:64,

kernel size:3
6  LR2 LeakyReLU alpha=0.3
7  D2 Dropout p = 0.25
8  SC3 Separable convolution2D Channel number:32,

kernel size:3
9  LR3 LeakyReLU alpha=0.3

nectio
tion 

w
b
k

3

c
a

10  D3 Dropout 

11  R1 Residual con
12  FC Fully connec

softmax regression based on the output from the fully connection
layer, which can be expressed as:

y = 1[(
i
)T

i

]

⎡
⎢⎢⎢⎢⎢⎢⎢

e

[(
w1
y

)T
f +b1

y

]

e

[(
w2
y

)T
f +b2

y

]
⎤
⎥⎥⎥⎥⎥⎥⎥ (8)
∑K

i=1e
wy f +by ⎢⎢⎢⎣

...

e

[(
wKy

)T
f +bKy

]
⎥⎥⎥⎦

i
o
d
p

5

p = 0.25
n /

Dense number:128

here wiy is the weight matrix connecting to the ith output neuron,
i
y is the corresponding bias vector, and K denotes the different
inds of fault modes or health conditions.

.3. Double layer Attention-based domain discriminator

The double layer attention-based domain discriminator mainly
ontains two parts: sub-domain discriminators and double layer
ttention matrices. Firstly, the original domain discriminator Gd

s split into a series of sub-domain discriminators Gk

d
, and each

f them is responsible for matching the source and target domain
ata corresponded to the source domain label

{
yk

∣∣yk ∈ Ys
}

. Com-
ared with the traditional domain discriminator, which conducts
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Table  1b
Parameters of proposed sub-domain discriminator.

Layer Symbol Operator Parameter

1 Input Input data 128 × 1
2  C1 Convolution1D Channel number:32,

kernel size:3
3  LR1 LeakyReLU alpha=0.3
4  D1 Dropout p = 0.25
5  C2 Convolution1D Channel number:16,

kernel size:3
6  LR2 LeakyReLU alpha=0.3
7  D2 Dropout p = 0.25
8  FC1 Fully connection Dense number:512
9  LR3 LeakyReLU alpha=0.3
10  FC2 Fully connection Dense number:128
12  LR4 LeakyReLU 

13  FC3 Fully connection 

14  S1 Softmax 

w
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t
m
f
p
d
f
a
d
l
s
g
t
p
w
s

t
m
k
b
c
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M

W
t
m
m
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Fig. 3. Architecture of the proposed feature generator.

the domain adaptation considering the whole distribution of Xs and
Xt , the sub-domain discriminators could achieve better flexibility
when the label spaces across two domains are different. The neg-
ative transfer effect caused by unbalanced label space �YsYt could
be suppressed if the sub-domain discriminators corresponded to
the outlier label space could be correctly identified. Therefore, the
double layer attention mechanism is employed subsequently as the
transfer indicators for sub-domain discriminators. The double layer
attention mechanism is constructed based on two matrices defined
as domain attention matrix Md and sample attention matrix Ms,
which are introduced as follows:

Md = [yk] , k = 1, 2, · · ·, Cs

Ms =

⎡
⎢⎢⎣
si1

...

si
k

⎤
⎥⎥⎦ , i = 1, 2, · · ·, Ns+t

(9)

where the number of label space in the source domain is denoted
as Cs, and the number of total source and target domain samples is
denoted as Ns+t .

The first layer is designed to determine which sub-domain dis-
criminators should be activated for the current transfer task. Since
the label space of target domain is unknown during the training
process, it is hard to know which label spaces should be shared

across the source domain and the target domain. Correspondingly,
the domain attention matrix Md is designed to assign different
weights yk to each sub-domain discriminator. More attention is
expected on those discriminators sharing the same label space, as

b
i
d
s

6

alpha=0.3
Dense number:2
/

ell as less attention is laid on the discriminators responsible for
he outlier label space.

It should be noticed that only assigning domain attentions yk
o discriminators could not guarantee the whole transfer perfor-

ance of the diagnosis model. Because there would be no guidance
or these weighted sub-domain discriminators to decide which
art of the samples should be exploited as training data for each
omain adaptation process. If samples from different domains are

ed into these discriminators indiscriminately for each sub-domain
daptation, there would lead to a problem that the sub-domain
iscriminator would learn the wrong pattern according to the out-

ier source sample although this sub-discriminator belongs to the
hared label spaces. Therefore, the second layer Ms is designed to
enerate attentions si

k
of each sample for sub-domain discrimina-

ors. The sample attention matrix is expected to ensure each data
oint could be only aligned to one or several most relevant classes
ith high attention value si

k
, while the irrelevant classes with low

i
k

would be filtered out.
The comparisons across transfer without attention mechanism,

ransfer with only domain attention mechanism and double-layer
echanism is demonstrated in Fig. 4. It could be seen that the

ey step of successful implement of partial transfer based on dou-
le layer attention mechanism is to select reasonable metrics to
onstruct yk and sk

i
, which could judge whether the unknown

arget domain data share the same label space with the source
omain. As mentioned above, the index MMD  has been applied

n many feature-based transfer approaches attributed to its supe-
ior capacity of characterizing distributions similarity. Therefore, in
his paper the index MMD  is exploited as the metrics to construct
he double layer attention matrices to assign different weights. The
etailed calculation of MMD is described as follows:

MDH (X, Y) := sup

 ̊ ∈ H
{
EX∼p [˚ (x)] − EY∼p [˚ (y)]

}
(10)

here sup { · } is the supremum of the input aggregate, H indicates
he reproduced kernel Hilbert space (RKHS), and ˚ (x) is a nonlinear

apping function from the original space to RKHS. The nonlinear
apping function ˚ (x) in RKHS is assumed to be rich enough to

btain an appropriate mode which could maximize the distance

etween the source data and the target data. If the value of MMD

s small, it can be concluded that these two  samples follow similar
istributions, which indicates that the target data may  share the
ame fault type as the sub-domain data.
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Fig. 4. Domain adaptation based on discri

Based on the MMD  metrics, the first layer attention Md = [yk]
can be formulated as:
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(∑Nt
i=1d

tk
i

)]

(11)

where the feature generator based on the separable CNN is denoted
as Gf ( · ). xsk

j
refers to the jth source domain data of kth fault type,

and total sample number of source domain in kth class is sk. The
distance dk

i
is calculated to measure the similarity between the dis-

tribution of ith target domain data (source domain data) and the
whole distribution of source domain data from the kth label space.
Correspondingly, the larger distance dk

i
is, the lower probability that

the data xt
i

belongs to the label space k will be. After obtaining dk
i
,

the domain attention yk could be derived subsequently by evaluat-
ing the similarity with the label space k from whole target domain.
Note that the probability yk

i
represents a negative correlation with

the MMD  distance metrics, the reciprocal operation is applied in
Eq. (11).

Similarly, the second layer attention could be obtained as fol-
lows:

ski =

⎧⎪⎪⎪⎨
⎪⎪⎪
ssk
i

:
1/dsk

i∑Cs
k=11/dsk

i

stk :
1/dtk

i∑
(12)
⎩ i Cs
k=11/dtk

i

After the calculation of attention matrices Md and Ms, the tradi-
tional optimization function described in Eq. (1) is transformed to

3

o

7

ors with different attention mechanisms.

 double-layer weighted loss function as follows:

min
Gf

max
Gd

∑Cs
k=1

[∑Ns
i=1

[
log

[
yk · Gk

d

(
ssk
i

× f s
i

)]]
+ ∑Nt

i=1

[
log

[
1 − yk · Gk

d

(
stk
i

× f t
i

)]]]

Compared with the single domain discriminator in GAN, the pro-
osed weighted loss function enables attention-based adaptation
here the target data is only focused on those relevant sub-domain

iscriminators according to the probabilities yk
i

and sk
i
. The pro-

osed double layer attention-based domain discriminator has three
ain advantages:

) The proposed multiple sub-domain discriminators provide a
soft and flexible transfer mechanism compared with the hard
assignment of all source and target data to only one discrimi-
nator. The formulation of multiple discriminators with different
parameters �k

d
could enhance the learning performance in each

sub-domain.
) The designed domain attention layer enables the model to know

which label spaces are shared and which sub-domain discrim-
inators should be emphasized. The sub-domain discriminators
with different weights could suppress the negative effect from
outlier label space, which provides guidance for the model to
know where to transfer.

) The designed sample attention layer further explores the prob-
lem of where to transfer in the aspect of better using the source
and target domain samples. The target data with unknown labels
is only aligned to one or several most relevant fault classes with
high value of attentions sk

i
, which could avoid introducing the

redundant information and promote the positive transfer per-
formance for each sub-domain discriminator.

.4. Overall objective function and training strategy
.4.1. Optimization objective
The proposed DA-GAN model consists of two optimization

bjects:
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1) Minimization of the fault identification error Lc on the source
domain data.

2) Minimization of domain adaptation loss Ld with respect to the
feature generator Gf and maximization of Ld with respect to the
double layer attention-based discriminator Gd;

Object 1: To achieve the effective diagnosis transferability, the
extracted domain-share feature is expected to discriminate differ-
ent mechanical fault types. Since the target label is not available

during training, the source domain dataset Ds =
{
xs
i
, ys
i

}N
i=1

is
developed to minimize the fault classification error. The classifi-
cation loss could be formulated as:

Lc = 1
ns

∑
fi ∈ Ds

Ly
[
Gy (fi, yi)

]
(14)

where Gy is the fault classifier proposed in section 3.1, fi is the
generated features with proposed separable CNN network, and Ly
denotes the cross-entropy loss.

Object 2: The domain adaptation module is accomplished
through a minimax adversarial strategy. During the competitive
training process, the discriminator Gd is trained to distinguish fea-
tures from source and target domains by maximize the domain
adaptation loss Ld, and at the same time, the generator Gf is
expected to capture the domain-invariant features by minimize the
domain adaptation loss Ld. The optimization function of domain
adaptation can be rewritten as:

Ld = 1
Ns

Cs∑
k=1

×

⎡
⎣ ∑
f s
i

∈ Ds

yk × Lkd
(
Gkd

(
sski × f si , εki
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⎤
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Nt
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k=1

×

⎡
⎣ ∑
f t
i

∈ Dt

Lk
d

[
Gk
d (fi, di)

]
= dilog

1

Gk
d (fi)

+ (1 − di) × log
1 −

where εk
i

indicates the binary variable of k th sub-domain discrim-
inator Gk

d
, f s
i

and f t
i

are extracted features from source domain and
target domain respectively.

Combining all these optimization functions, the overall object
can be expressed as:

L
(
�f , �y, �kd|Kk=1

)
= Lc

(
�f , �y

)
−  ̨ × Ld

(
�f , �d

)
(16)

where  ̨ is the hyperparameter which trade-off these objectives in
the unified optimization problem.

3.4.2. Training strategy
Once the overall optimization function is built, the stochastic

gradient descent (SGD) algorithm could be applied to train the pro-
posed method, in which the parameters

(
�f , �y, �d

)
can be trained

as follows:(
�̂f , �̂y

)
= argmin

�f ,�y
L
(
�f , �y, �̂

Cs
d

|Cs
k=1

)
(
�̂1
d
, . . ., �̂Cs

d

)
= arg max

�k
d
|Cs
k=1

L
(
�̂f , �̂y, �kd|Csk=1

) (17)

It should be noticed that the DA-GAN network could not possess
an explicit loss function for model training since the parameters(
�f , �k

d

)
are updated in the opposite direction during the adver-
sarial stage. To achieve the flexible implement of SGD algorithm,
this paper update the gradient of the generator and discrimina-
tor iteratively, in which the parameter �k

d
will be frozen during the

training process of parameter �f . Through this circuitous training

f
c
i
C
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Lkd
(
Gkd

(
stki × f ti , εki

))
⎤
⎦

i)

(15)

trategy, the parameters �f , �y, �d can be updated with the standard
ackpropagation algorithm, which can be expressed as:

�f ←− �f − �

(
∂Lc
∂�f

− ˛
∂Ld
∂�f

)

�y ←− �y − �

(
∂Lc
∂�y

)

�k
d

←− �k
d

− �

(
∂Ld
∂�k
d

)
(18)

where � represents the learning rate taken by the SGD algo-
ithm during training progresses.

. Experimental study

.1. Dataset description

To validate the performance of DA-GAN on partial transfer for
oth TIM and TDM scenarios, two rolling bearing datasets are
xploited in this section to build three partial transfer mechanical
iagnosis experiments.

) Dataset A: The CWRU bearing dataset (Bearings Data Center)

The CWRU bearing dataset is commonly used for mechanical
ault diagnosis, in which the vibration data were measured from

he motor bearings. There were totally ten kinds of health states in
he monitoring data, which were generally separated as: (1) healthy
H), (2) inner race fault (IF), (3) outer race fault (OF) and (4) ball fault
BF). These three faults are further classified according to the fault
ize as 0.07 in., 0.14 in. and 0.21 in., respectively. The vibration sig-
al was sampled with 12.8 kHz and each sample contained 96,678
ata points.

) Dataset B: The Paderborn University bearing dataset (Bearing
DataCenter)

In the Paderborn University bearing dataset, the ball bearings
ault could be divided into artificial faults and real damages caused
y the accelerated lifetime test (ADT). In the artificial fault data,
wo kinds of common fault type inner race fault and outer race fault
ere recorded. But for the real damages fault data, it also contained

ome unusual failures, such as failure caused by plastic deformation
nd combined damage modes. The collected bearing fault signals
onsist of motor current, vibration, dynamic loading and tempera-
ure. The vibration signal is sampled with 64 kHz and each sample
ontained 25,600 data points.

) Dataset C: The XJTU-SY bearing dataset (XJTU-SY Bearing
Datasets)

Different from datasets A and B collecting data with obvious

ault characteristics, XJTU-SY bearing dataset collects the full life
ycle bearing information with different degradation modes as
nner fault, outer fault and combined fault. Therefore, the dataset

 not only contains similar obvious fault characteristics data as
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datasets A and B, but also collects early-stage life cycle data with
weak fault characteristics. The vibration signal is sampled with 25.6
kHz and each sample contained 32,768 points.

The three datasets details are summarized in Table 2, and three
experimental cases are designed to comprehensively evaluate the
proposed method under different degrees of domain shifts.

4.2. Compared approaches

In this paper, different strategies including no transfer, feature-
based transfer and adversarial-based transfer are implemented on
the partial transfer learning problem for comparison study. To
evaluate the proposed method fairly and comprehensively, all the
following approaches would share the similar network (same struc-
ture for feature generator) and hyperparameters with DA-GAN
model.

(1) Baseline

First, a baseline method is applied for comparison to show the
transferring performance without transfer. The baseline model has
no special designed structures for domain adaptation and partial
transfer learning. The feature extractor and classifier are trained
with the labeled source domain data and would directly predict
the unlabeled target domain data.

(2) Feature-based model: Domain adaptation based on MMD

In the feature-based domain adaption method, the metric MMD
is employed as the optimization item, training the whole network
to extract domain-invariant features and to achieve better transfer-
ability. In this section, the popular methods in the existing studies
multi-kernel MMD  (MK-MMD) (Che et al., 2020) and multi-layer
MMD (ML-MMD) (Yang et al., 2019) are applied.

(3) Adversarial-based model: Domain adaptation based on GAN

In the adversarial-based model, two kinds of GAN model,
deep adversarial CNN (DACNN) (Han et al., 2019) and selective
adversarial network (SAN) (Cao et al., 2018b), are employed for
comparisons. In the DACNN model, the sub-domain discriminators
and double-attention layer are removed, the domain adaptation is
implemented by one discriminator. In the SAN model, the multi-
ple sub-domain discriminators are also constructed but only the
domain attention is calculated based on pseudo-label from the tar-
get domain.

4.3. Brief introduction of designed experimental cases

In this sub-section, a brief introduction of designed transfer sce-
nario cases is provided. The comparisons of three experimental
cases are illustrated in Fig. 5. It can be seen that the challenges
among three partial transfer learning scenarios are increased pro-
gressively. In Case I, the model evaluation is focused on transferring
diagnosis knowledge under different working conditions, in which
the target domain data have different label space compared with
source domain data. In Case II, the model evaluation is focused on
the partial transferring performance across different machines, also
known as TDM issues which have not been investigated compre-

hensively. In Case III, the partial transfer task further concerns the
effect of different fault characteristics, in which the model trained
with obvious fault data is expected to transfer diagnosis knowledge
on weak fault characteristics data.

s
c
l
n
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.4. Case study I: partial transfer problem for TIM scenario

.4.1. Experiment description
In this sub-section, the partial transfer learning problem is stud-

ed for TIM scenario. Different fault diagnosis knowledge transfer
asks are designed to make comprehensive comparisons between
roposed DA-GAN and other deep transfer approaches. The detailed

nformation of the concerned transfer tasks is given in Table 3,
hich are randomly selected from dataset A and B.

For the transfer task TIMA, 2000 source-domain and target
omain samples with 12,800 sample length at each health state
re employed for model training. For the transfer task TIMB, the
ample number is 1000 and the sample length turns to 64,000 to
atch the sampling frequency. It should be noticed that the target

omain data are unlabeled, therefore samples are shuffled to guar-
ntee that the labeled source domain samples and the unlabeled
arget domain samples from the same label space would not be
ligned before domain adaptation. Afterwards, totally 2000 sam-
les from the target domain are tested, and the predicted result of
ach task is averaged 10 trials to reduce the randomness. The train-
ng iterations of each model is set as 500 to guarantee a convergent
esult, the learning rate is set as 0.01, and the batch size is set as
00. For DA-GAN, the trade-off parameter  ̨ is set as 0.5. Both mean
alue and standard deviations of predicted results are provided to
educe the effect of randomness.

.4.2. Experimental results and performance comparisons
The TIM fault diagnosis results for dataset A are presented in

able 4. It can be observed that all the compared deep transfer
pproaches could obtain excellent transfer performance in the non-
artial transfer problem (Task CA−1). However, when dealing with
he partial transfer problems, where the target samples have large
iased label space compared with the source domain, the trans-
er performance of these approaches are degraded and even the
egative transfer occur, such as CA−6, CA−8 and CA−9. The confu-
ion matrices of testing accuracy on these partial transfer tasks are
llustrated in Fig. 5. Based on the confusion matrix, it can be found
hat the testing accuracies of all the feature-based approaches (MK-

MD  & ML-MMD)  and adversarial-based approaches (GAN & SAN)
educe greatly when only the limited label spaces exist in the test-
ng data. Especially in the extreme case CA−9, where one health
tate, inner race fault with 0.14 in. fault size, is included in the tar-
et domain data, the SAN model could only reach 44.9 % accuracy
n testing data, which is even much lower than the accuracy of
aseline model without transfer.

To further investigate the severe degradation of transfer per-
ormance on the SAN approach, the domain attention matrices of
0 transfer tasks constructed by SAN and DA-GAN are illustrate in
ig. 6. The true domain attention is given based on the latent target
omain labels, and it can be seen the domain attention for task-9
hould be concentrated on label-3. However, the SAN attention on
ask-9 has been mainly scattered to label-2, label-3 and label-4, in
hich samples from irrelevant label spaces produce negative effect

n domain adaptation process. Since the domain attention in the
AN approach is built on the pseudo label trained from source data,
he large bias between two domains could lead to a wrong pseudo
abel distributions and interference the transferability correspond-
ngly.

On the other hand, the proposed DA-GAN model could construct
he domain attention correctly compared with SAN. Benefit from
etter representation of domain similarity based on MMD-metrics

nstead of depending on pseudo labels, DA-GAN model shows great

uperiority on partial transfer learning problems, especially in the
ases where the source domain and target domain has large-biased
abel space. It should be noticed in the engineering machinery diag-
osis scenario, the unlabeled testing data for one machine usually
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Table  2
The detailed information of three experimental datasets.

Name Dataset Specification

Dataset A:
CWRU dataset

Bearing type Ball bearing, SKF 6205−2RS JEM
Working condition Load : 0Hp / 1Hp / 2Hp / 3Hp Speed: 1720 rpm to 1797 rpm
Health state label &
Health state specification

1
2
3
4
5
6
7
8
9
10

Health
Inner race fault with 0.07 in. fault
size
Inner race fault with 0.14 in. fault
size
Inner race fault with 0.21 in. fault
size
Ball fault with 0.07 in. fault size
Ball fault with 0.14 in. fault size
Ball fault with 0.21 in. fault size
Outer race fault with 0.07 in. fault
size
Outer race fault with 0.14 in. fault
size
Outer race fault with 0.21 in. fault
size

Fault  mode Artificial damage
Data type Fault data sampled with 12,800 Hz

Dataset B:
Paderborn dataset

Bearing type Ball bearing, SKF 6203
Working condition Load :400 N / 1000N Speed: 900 rpm/1500 rpm Torque: 0.1 Nm / 0.7 Nm
Health state label &
Health state specification

1a
2a
3a
1b
2b
3b
4b
5b

Inner race fault (Artificial damage)
Health
Outer race fault (Artificial damage)
Inner race fault (Fatigue pitting)
Health
Outer race fault (Fatigue pitting)
Inner race fault + Outer race
fault(Fatigue pitting)
Inner race fault + Outer race fault
(Plastic deformations)

Fault mode Artificial damage & Real damage by accelerated life test
Data type Fault data sampled with 64,000 Hz

Dataset C:
XJTU dataset

Bearing type Rolling bearing, LDK UER204
Working condition Load : 10 kN / 11 kN / 12 kN Speed: 2100 rpm/2250 rpm / 2400 rpm
Health state label &
Health state specification

1c
2c
3c
4c

Inner race fault
Outer race fault
Inner race fault + Outer race fault
Health

Fault mode Real damage by accelerated life test
Data  type Full life cycle running data

sampled with 25,600 Hz

Table 3
Transfer tasks for experimental case I.

TIM for dataset A: CWRU TIM for dataset B: Paderborn bearing dataset

Task Transfer scenario Target Classes Task Transfer scenario Target Classes
CA−1 1797 rpm→1730 rpm Non-Partial CB−1 1000 N →400 N Non-Partial
CA−2 1797 rpm→1730 rpm 1,3,5,7,9 CB−2 1000 N →400 N 1a,3a
CA−3 1797 rpm→1730 rpm 246,810 CB−3 1000 N →400 N 2a,3a
CA−4 1797 rpm→1730 rpm 1,2,3,8 CB−4 1000 N →400 N 3a
CA−5 1797 rpm→1730 rpm 2,5,8 CB−5 1000 N →400 N Non-Partial
CA−6 1797 rpm→1730 rpm 3,7,9 CB−6 1000 N →400 N 1b,3b,5b
CA−7 1797 rpm→1730 rpm 1,2 CB−7 1000 N →400 N 2b,4b,5b
CA−8 1797 rpm→1730 rpm 3,5 CB−8 1000 N →400 N 1b,5b
CA−9 1797 rpm→1730 rpm 3 CB−9 1000 N →400 N 3b,4b
CA−10 1797 rpm→1730 rpm 2 CB−10 1000 N →400 N 3b

Table 4
Means and standard deviations of the testing accuracies on TIM for dataset A.

Task Name Baseline MK-MMD  ML-MMD GAN SAN DA-GAN

CA−1 96.4(±1.5) 98.5(±1.1) 95.5(±0.3) 99.3(±0.2) 97.2(±0.6) 99.7(±0.1)
CA−2 93.7(±1.7) 95.4(±1.3) 96.2(±0.2) 97.4(±0.4) 91.5(±0.7) 99.6(±0.2)
CA−3 99.6(±0.1) 98.2(±0.9) 98.2(±0.2) 99.6(±0.1) 98.4(±0.1) 99.9(±0.1)
CA−4 94.6(±0.1) 96.7(±1.5) 93.6(±0.4) 98.0(±0.4) 86.2(±1.1) 99.4(±0.1)
CA−5 99.3(±0.1) 99.8(±0.2) 99.8(±0.1) 99.4(±0.2) 99.9(±0.1) 99.9(±0.1)
CA−6 88.1(±0.3) 67.5(±2.8) 74.5(±0.7) 89.4(±0.6) 83.6(±0.5) 96.2(±0.4)
CA−7 99.8(±0.1) 99.8(±0.1) 99.8(±0.1) 99.8(±0.1) 99.9(±0.1) 97.3(±0.4)
CA−8 81.9(±2.9) 73.4(±3.0) 90.6(±0.4) 94.8(±0.6) 74.3(±1.2) 99.8(±0.1)
CA−9 66.9(±2.9) 78.1(±3.1) 78.8(±0.7) 83.7(±1.0) 44.9(±1.5) 91.4(±1.3)
CA−10 99.7(±0.1) 99.9(±0.2) 99.7(±0.2) 99.8(±0.1) 99.9(±0.1) 99.6(±0.1)
Average 92.0 90.7 92.6 96.1 87.6 98.3
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has limited categories of faults or only one certain health state com-
pared with multi-labeled training data. Therefore, the proposed
DA-GAN is well suited for this type of partial transfer problem.

The TIM fault diagnosis results for dataset B are presented in
Table 5. Similar as Table 4, all the deep transfer approaches could
reach high prediction accuracy in non-partial scenario. Therefore,
the main comparison is focused on the partial transfer problems.
It can be observed that the transferability of these compared
approaches has been degraded dramatically for task CB−9 and CB−10.
One main reason is that the outlier label space would lead to neg-
ative transfer when conducting the domain adaptation process. To
compare the negative effect of outlier source data within different
approaches, in Fig. 7 the confusion matrices of testing accuracy on
partial transfer tasks CB−9 and CB−10 are given.

It can be observed that in the task of CB−9, the ML-MMD,  GAN and
SAN approaches have categorized target data of label-3 and label-
4 into one class, which greatly affect the transferability and even
produce negative transfer. In the task of CB−10, the negative effect
on the transferability from outlier source data is even more obvi-
ous, the ML-MMD approach incorrectly classifies more than 80 % of
the target data from label-3 into label-4. A possible reason causing
negative transfer is that these transfer learning models may  learn
the common feature mode from label-3 and label-4 to adapt source
and target domains but fail to capture the discriminative features
between them. Since the label-4 called as inner fault and outer fault
includes the identical fault type as in the label-3 called as outer
fault, it could easily lead to the negative transfer when conducting
domain adaptation. Especially when there is only one type of data
in the target domain but there is another type source domain data
including identical fault modes as the target domain data, this out-
lier data would affect the domain-shared feature learning process
and lead to unexpected negative transfer correspondingly.

While in the proposed DA-GAN model, this negative transfer
effect could be well suppressed by applying the double layer atten-
tion mechanism. The domain and sample attention matrices of
transfer tasks CB−9 and CB−10 are showed in Fig. 8. For task CB−9,
the actual label spaces in the target domain are label-3 (Outer fault)
and label-4 (Inner fault and outer fault). It could be observed that
these two kinds of labels have been lied on more weights com-
pared with other labels in the domain attention matrix. What’s
more, in the sample attention matrix, the weight of each sample

has been arranged correctly according to its latent fault class. For
instance, the target samples belonged to label-4 have more weights
on the fourth row of the attention matrix, which means that the
sub-domain of discriminator label-4 would pay more attention to

o
M
p
s

Fig. 5. The comparisons of designed experimental cases.
Confusion matrices of testing accuracy on the task CA−6 based on different approaches.
Confusion matrices of testing accuracy on the task CA−8 based on different approaches.
Confusion matrices of testing accuracy on the task CA−9 based on different approaches.
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raining with these samples compared with other sub-domain dis-
riminators. For task CB−10 where the target data has only one fault
lass of label-3, the domain attention matrix and sample atten-
ion matrix both successfully distribute more weights on label-3 to
onduct domain adaptation process.

According to the above comparative experimental results for
artial transfer tasks CB, it could be further concluded that DA-
AN model could effectively suppress the negative transfer effect
ause by the outlier data. Even in the case where the source outlier
ata share the identical feature mode as the target data (e.g. outlier

abel “inner fault and outer fault” in the source domain and label
outer fault” in the target domain), the designed double layer atten-
ion mechanism could still guide the sub-domain discriminators to
now where to transfer and to learn more discriminative features
or positive transfer.

.5. Case study II: Partial transfer problem for TDM scenario with
imilar fault characteristic

.5.1. Experiment description
In this sub-section, the partial transfer learning problem is

xplored for TDM scenario with similar fault characteristic. Two
ypes of TDM transfer tasks are designed to evaluate the transfer
erformance comparatively, which are listed in Table 6. In the first
ype of TDM transfer tasks, the source data and target data have
he same fault mode called as artificial fault (electric discharge

achining, EDM), but the data from two domains are collected
rom different machines with different sensors. In the second type
f TDM transfer tasks, the fault mode, sensor location and testing
achine of these two  domains are all different, which could further

xplore the transferability of these approaches under large domain
ariance. The detailed parameters used for training the TDM model
s given in Table 7.

.5.2. Experimental results and performance comparisons
The TDM fault diagnosis knowledge transfer performance of

ifferent approaches is given in Table 8, similar as case I, each
ransfer task is averaged 10 trials to reduce randomness and to
rovide mean value and standard deviation of the testing accura-
ies.

From the comparative results shown in Table 8, it could be

bserved that the feature-based methods (MK-MMD  and ML-
MD)  and adversarial-based methods (GAN and SAN) could

romote positive transfer compared with baseline method for TDM
cenario, but the transferability is much lower than these model’s
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(Cont
Fig. 5. 
performance on TIM scenario. More seriously, in some partial trans-
fer tasks as CA−B−4, CA−B−5 and CB−A−4, the feature-based methods
and SAN model even fail to transfer diagnosis knowledge. While

t
t
a

12
inued)
he proposed DA-GAN model provides significant improvement on
he positive transfer among these TDM tasks, which achieves the
verage testing accuracy of 87.9 %.
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Fig. 6. Domain attention matrices on transfer tasks for dataset A based on SAN and DA-GAN.

Table 5
Means and standard deviations of the testing accuracies on TIM for dataset B.

Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN

CB−1 89.9(±1.3) 97.8(±0.6) 95.7(±0.7) 98.8(±0.1) 98.9(±0.4) 99.9(±0.1)
CB−2 81.0(±3.2) 99.4(±0.3) 97.7(±0.5) 89.5(±1.7) 86.1(±1.4) 99.9(±0.1)
CB−3 98.8(±0.1) 99.3(±0.4) 98.6(±0.4) 93.3(±1.4) 95.9(±1.1) 99.5(±0.1)
CB−4 99.3(±0.4) 97.7(±0.6) 99.9(±0.1) 94.9(±1.0) 99.9(±0.1) 98.4(±0.4)
CB−5 92.5(±1.1) 81.7(±1.7) 99.7(±0.2) 99.9(±0.1) 87.6(±3.8) 99.9(±0.1)
CB−6 84.8(±1.9) 76.5(±1.6) 78.5(±1.4) 87.9(±3.1) 91.4(±2.2) 99.6(±0.1)
CB−7 97.7(±1.2) 99.7(±0.2) 99.8(±0.1) 89.6(±2.8) 99.5(±0.6) 99.8(±0.1)
CB−8 97.0(±1.6) 99.8(±0.2) 99.7(±0.1) 78.2(±2.9) 87.2(±2.4) 99.8(±0.1)
CB−9 77.8(±2.0) 74.5(±1.7) 58.3(±1.5) 59.0(±3.2) 40.5(±3.5) 98.8(±0.2)
CB−10 62.8(±2.8) 83.9(±1.6) 14.5(±1.0) 84.1(±2.7) 51.5(±5.8) 99.7(±0.1)
Average  88.1 91.0 84.2 87.5 83.8 99.5

Table 6
Transfer tasks for experimental case II.

TDM for dataset A and dataset B

Task Transfer scenario Target Classes
CA−B−1 CWRU artificial damage→Paderborn artificial damage 1a,2a,3a
CA−B−2 CWRU artificial damage→Paderborn artificial damage 1a,2a
CA−B−3 CWRU artificial damage→Paderborn artificial damage 1a,3a
CA−B−4 CWRU artificial damage→Paderborn artificial damage 2a
CA−B−5 CWRU artificial damage→Paderborn artificial damage 3a
CB−A−1 Paderborn natural degradation→CWRU artificial damage 1,2,3
CB−A−2 Paderborn natural degradation→CWRU artificial damage 1,2
CB−A−3 Paderborn natural degradation→CWRU artificial damage 1,3
CB−A−4 Paderborn natural degradation→CWRU artificial damage 2
CB−A−5 Paderborn natural degradation→CWRU artificial damage 3

Table 7
Parameters used for models in experimental case II.

Parameter Value Parameter Value

Source domain sample number 2000 Training iterations 500

1

target domain data belong to the different classes, but still share
some common feature distributions. In such case, the transfer
learning model tends to learn incorrect domain-invariant fea-
Target  domain sample number 2000 

Source  domain sample length 1280 

Target  domain sample length 6400 

To further investigate the effectiveness of proposed model, the
confusion matrix of each model on task CA−B−1 in Fig. 9. From
the comparative results shown in Fig. 9, all the transfer learning
approaches could promote the positive transfer on the label#1, but
the transferability on the label-2 and label-3 is far poor. These unex-
pected negative transfer results could be mainly attributed to two

reasons: incorrect adaptation and outlier data interference:

13
Batch size 100
Learning rate 0.001
Tuning parameters  ̨ 0.5

) Incorrect adaptation: Since the transfer task belongs to TDM sce-
nario, there has a large distribution shift across the source and
target domains. It is possible that the source domain data and
tures and fail for diagnosis knowledge transferring.
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Fig. 7. Confusion matrices of testing accuracy on the task CB−9 based on different approaches.
Confusion matrices of testing accuracy on the task CB−10 based on different approaches.

Table 8
Means and standard deviations of the testing accuracies on case II.

Task Name Baseline MK-MMD  ML-MMD GAN SAN DA-GAN

CA−B−1 17.7(±2.7) 51.0(±3.3) 60.0(±0.7) 64.6(±2.8) 49.5(±3.2) 98.1(±1.1)
CA−B−2 17.8(±3.5) 49.1(±2.9) 28.9(±0.7) 50.4(±2.9) 50.2(±2.8) 83.9(±3.3)
CA−B−3 17.5(±2.0) 49.3(±3.3) 49.8(±0.7) 49.6(±3.1) 49.5(±0.3) 90.4(±2.3)
CA−B−4 / 7.9(±2.7) 11.9(±0.5) 96.4(±1.8) / 98.4(±1.1)
CA−B−5 / 34.6(±3.2) 70.8(±0.7) 99.8(±0.1) / 99.4(±0.4)
CB−A−1 16.4(±2.7) 40.4(±3.9) 44.5(±0.7) 41.7(±3.4) 50.3(±3.9) 81.3(±3.0)
CB−A−2 15.2(±2.8) 43.3(±2.7) 17.3(±0.6) 49.8(±2.5) 72.1(±3.0) 88.0(±1.5)
CB−A−3 27.9(±3.3) 36.2(±3.8) 37.8(±0.7) 18.7(±2.8) 61.6(±2.2) 61.0(±1.2)

.5(±0

.7 
CB−A−4 / / / 

CB−A−5 27.1(±3.0) 27.8 (±2.6) 86
Average 13.9 33.9 40

2) Outlier data interference: The outlier data in the source domain

may  also contain similar feature mode as the target data, which
would lead to the extra confusion for domain adaptation pro-
cess. The transferability would be severely reduced under the
negative effect of outlier data.

m
s
I
m

14
43.5(±3.4) / 88.7(±2.1)
.5) 63.6(±2.7) 63.3(±3.7) 90.4(±1.5)

57.8 39.7 87.9

To visually understand how these factors influence the perfor-

ance of transfer models, the FFT spectrum distributions of the

ource data and target data for task CA−B−1 are given in Fig. 10.
t can be seen that the source data from label-1 has some com-

on  distribution model as the target data from label-2. It is also
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Fig. 8. Domain and sample attention matrices constructed by DA-GAN for CB−9 and CB−10.

racy o

r

Fig. 9. Confusion matrices of testing accu

obvious that the outlier data from label-4 has some similar dis-

tributions as the target data from label-2 and label-3. This could
well explain the transferability degradation of compared models
in Fig. 9. For instance, the ML-MMD  method has recognized target
data from label-2 as label-1, which could be attributed to the incor-

f
b

l

15
n CA−B−1 based on different approaches.

ect adaptation. The MK-MMD  method categorizes the target data

rom label-2 and label-3 into label#4, which is mainly influenced
y the effect of outlier data.

In the proposed DA-GAN model, these two unexpected prob-
ems could be well suppressed by applying double layer attention
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Fig. 10. FFT spectrum distributions of source domain data and target domain data.
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Fig. 11. Domain and sample attention 

mechanism, which is illustrated in Fig. 11. It can be seen that the
domain attention matrix could guide the model to activate correct
sub-domain discriminators label-1, label-2 and label-3 for subse-
quent adaptation process. This could alleviate the interference from
outlier data label space. Further the sample attention matrix is
constructed to utilize data discriminately for each sub-domain dis-
criminators. It can be observed that each sample would be assigned
more probability on its corresponding label, this could promote the
correct domain alignment across different domain data and greatly
reduce the negative effect caused by wrong adaptation.

4.6. Case study III: Partial transfer problem for TDM scenario with
different fault characteristics

4.6.1. Experiment description
In this sub-section, a more challenged partial transfer scenario,

where the data from source domain and target domain are not only
from different machines, but also have different fault characteris-
tics, such as obvious bearing fault through artificial damage and
weak bearing fault from the early-stage & middle-stage of nature
degradation.

Totally 12 transfer tasks with different fault characteristics are
designed in case III, including different types of fault characteristic
transfer problems: transferring diagnosis knowledge from artifi-
cial damage fault data to early-stage & middle stage fault data

(Task CA−C−1 to CA−C−6) and transferring diagnosis knowledge from
nature degraded fault data to early-stage & middle stage fault data
(Task CB−C−1 to CB−C−6). The detailed transfer tasks specification
and parameters setting are listed in Tables 9 and 10respectively.

f
t
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16
es constructed by DA-GAN for CA−B−1.

.6.2. Experimental results and performance comparisons
The comparative results of transferring diagnosis knowledge

cross different machines with different degrees of fault character-
stics is given in Table 11. Each transfer task is averaged 10 trials to
educe the randomness and to provide the mean value and standard
eviation of the testing accuracies.

From Table 11 it can be seen that the proposed DA-GAN could
ffectively improve the model accuracy compared with other
pproaches in the partial transfer scenarios with different fault
haracteristics. For example, in the transfer task CA−C−6, where the
abelled training data are from CWRU dataset with obvious artifi-
ial fault characteristics and testing unlabeled data are from XJTU
ataset with early fault characteristics, the proposed method (DA-
AN with 89.4 % accuracy) shows great superiority in promoting
ositive transfer compared with other GAN-based method (GAN
ith 71.4 % accuracy & SAN with 75.2 % accuracy). What’s more, the

eature-based model (MK-MMD  with 39.6 % accuracy) even leads
o unexpected negative transfer, which degenerate the diagnosis

odel trained from source data solely without transfer.
The classification results on task CB−C−2 based on different

pproaches are given in Fig. 12. It can be seen that the feature-based
ransfer models (MK-MMD  and ML-MMD)  classify all the inner fault
nd outer fault data as normal data wrongly, which lead to unex-
ected negative transfer and degenerate the base model. Compared
ith feature-based models, adversarial-based models (GAN and

AN) could effectively transfer diagnosis knowledge about classi-

ying fault and health data, however, they could not discriminate
he difference between inner fault and outer fault data since all
ault data are classified as inner fault. The proposed DA-GAN model
ould effectively solve the issue through the double-layer atten-
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Table  9
Transfer tasks for experimental case III.

TDM from dataset A to dataset C, TDM from dataset B to dataset C

Task Transfer scenario Target Classes
CA−C−1 CWRU artificial damage→XJTU-SY middle-stage fault 1c,2c,3c
CA−C−2 CWRU artificial damage→XJTU-SY middle -stage fault 1c,2c
CA−C−3 CWRU artificial damage→XJTU-SY middle -stage fault 1c,3c
CA−C−4 CWRU artificial damage→XJTU-SY early-stage fault 1c,2c,3c
CA−C−5 CWRU artificial damage→XJTU-SY early-stage fault 1c,2c
CA−C−6 CWRU artificial damage→XJTU-SY early-stage fault 1c,3c
CB−C−1 Paderborn natural degradation→XJTU-SY middle-stage fault 1c,2c,3c,4c
CB−C−2 Paderborn natural degradation→XJTU-SY middle-stage fault 1c,3c,4c
CB−C−3 Paderborn natural degradation→XJTU-SY middle-stage fault 1c,3c
CB−C−4 Paderborn natural degradation→XJTU-SY early-stage fault 1c,2c,3c,4c
CB−C−5 Paderborn natural degradation→XJTU-SY early-stage fault 1c,3c,4c
CB−C−6 Paderborn natural degradation→XJTU-SY early-stage fault 1c,3c

Table 10
Parameters used for models in experimental case III.

Parameter Value Parameter Value

Source domain sample number 2000 Training iterations 500
Target  domain sample number 2000 Batch size 100
Source  domain sample length 1280 & 6400 Learning rate 0.001
Target  domain sample length 2560 Tuning parameters  ̨ 0.5

Table 11
Means and standard deviations of the testing accuracies on case III.

Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN

CA−C−1 52.0(±7.8) 50.8(±4.4) 65.2(±3.5) 83.8(±6.2) 79.0(±3.9) 93.6(±3.2)
CA−C−2 34.2(±6.7) 55.4(±3.5) 70.0(±2.9) 81.6(±4.3) 93.2(±2.7) 99.0(±0.6)
CA−C−3 50.4(±6.7) 68.0(±3.4) 98.4(±0.7) 80.2(±3.8) 84.2(±4.4) 93.4(±1.8)
CA−C−4 42.2(±6.4) 51.0(±3.9) 60.0(±3.6) 61.8(±6.2) 67.6(±6.6) 77.2(±5.4)
CA−C−5 28.6(±6.7) 37.2(±3.4) 64.4(±2.9) 68.0(±6.4) 84.4(±2.1) 94.0(±2.7)
CA−C−6 59.4(±9.0) 39.6(±3.3) 75.0(±2.4) 71.4(±8.6) 75.2(±6.9) 89.4(±5.1)
CB−C−1 28.4(±4.8) 51.0(±4.1) 47.8(±3.3) 74.2(±4.4) 71.2(±5.7) 90.0(±3.7)
CB−C−2 66.0(±5.2) 52.0(±4.7) 52.0(±3.2) 72.2(±4.7) 70.0(±4.2) 94.0(±3.2)
CB−C−3 / 32.6(±3.5) / 66.6(±5.9) 57.6(±4.4) 89.0(±2.9)
CB−C−4 33.8(±5.5) 40.6(±3.6) 25.4(±2.9) 72.6(±4.5) 65.6(±6.9) 76.6(±5.4)
CB−C−5 68.8(±6.0) 50.0(±4.3) 48.8(±3.2) 79.4(±6.5) 98.0(±1.8) 98.8(±1.0)

.6(±3.
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CB−C−6 29.6(±6.1) 37.8(±3.9) 48
Average  41.1 47.2 54

tion mechanism. The attention matrices based on DA-GAN for task
CB−C−2 is illustrated as Fig. 13. It can be seen that all samples will
be guided to conduct domain adaptation adaptively according to
the double layer attention matrices. Especially for testing data with
weak fault characteristics (such as inner fault and outer fault during
early-stage degradation), the sample weight matrix could promote
the positive transfer by assigning discriminative weights to these
confusing data, which could effectively improve the transferabil-
ity in the scenario where source domain and target domain have
different fault characteristics.

5. Conclusions

In this paper, a novel adversarial-based approach is proposed to
address the partial transfer problem for mechanical fault diagno-
sis. The designed double layer attention mechanism could promote
the positive transfer and alleviate the negative effect of irrelevant
source data. The first domain attention is applied to decide which
label space in the target domain should be shared for the current
transfer task, and the second sample attention is implemented to

know which samples should be focused on for each sub-domain
discriminator.

We  believe that the proposed DA-GAN model could shed a new
angle for solving mechanical fault diagnosis transfer learning prob-

C

-

17
2) 71.4(±6.8) 51.4(±5.8) 86.2(±6.1)
73.6 74.8 90.1

ems, which enables the network to know where to transfer instead
f conducting domain adaptation indiscriminately. Three experi-
ental case studies have been investigated and the comparative

esults validate that the proposed method shows great superiority
n promoting positive transfer under different degrees of domain
hifts, such as different working conditions, different machines and
ifferent fault characteristics. Especially in the extreme cases where
he target label space has large-biased data compared with source
omain, the proposed method could effectively alleviate the nega-
ive transfer caused by the outlier source data. Consider that above
xtreme cases, in which only one fault occurs in a certain machine,
re more common in practice, the proposed DA-GAN could pro-
ote the extension of diagnosis model from academic research to

ngineering scenarios.
Another possible case may  also occur in practice, where some

dditional faults not belonging to the source domain classes happen
n the testing machine. This problem called as open set domain
daptation will be explored in the future research.
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Fig. 12. Confusion matrices of testing accuracy on CB−C−2 based on different approaches.
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